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Analysis of a dissipative model of self-organized criticality with random neighbors
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We analyze a random neighbor version of the Olami-Feder-Christensen stick-slip model. We find that the
mean avalanche size is finite as soon as dissipation exists in the bulk but that this size grows exponentially fast
when dissipation tends to zero.@S1063-651X~97!50109-7#

PACS number~s!: 05.40.1j, 05.70.Ln, 64.60.Ht
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It is an appealing idea that many power laws observed
nature arise from an intrinsic trend of a large class of
tended non-equilibrium systems to evolve toward criti
points @1#. This concept of self-organized criticality~SOC!
has therefore attracted much interest and implicit assu
tions of the original model have been subjected to inte
scrutiny. Several early SOC explanations assigned a cru
role to strict bulk conservation@2,3#. Nonconserving models
which show SOC behavior have since been found@4,5# but
in several cases the effect of a small dissipation rema
unclear. An interesting model where dissipation is control
by a parametera, has been introduced by Olami, Feder, a
Christensen~OFC! in @6# as a simplified version of previou
modeling of fault dynamics@7#. Numerical results and sup
porting arguments appear to indicate that the OFC mo
exhibits power-law distributed avalanches in the dissipa
range ofa values below the conservinga0 @6,8#. A random
neighbor version of the OFC model has been studied in@9#
and numerical evidence of SOC behavior has similarly b
found for ac,a,a0. Our aim here is to analyze this sim
pler version of the OFC model. In contrast to@9#, we find
that avalanches are of finite size up to the conserving li
a5a0 but that their mean size grows exponentially fast
a→a0. This may explain our disagreement with@9# and can
perhaps also serve as a cautionary note about similar num
cal evidence obtained for local lattice models.

The model@9# consists of a set ofN sites, to each of
which is associated an ‘‘energy’’xi . The dynamics alter-
nates between two phases:

~i! The loading phase is supposed to take place on a
time scale in the fault dynamics context. In this phase, all
xi are below a threshold and increase continuously and
multaneously with time. This regime lasts until one ener
reaches the threshold energy, which we choose equal to 1
this point, an avalanche starts and the dynamics enters
avalanche phase.

~ii ! The avalanche phase is thought to be instantaneou
the time scale of the loading which can thus be neglec
The dynamics is entirely governed by energy transfers
tween different sites. For eachxi>1, K different sitesj ( i ) are
randomly chosen. On each one, the energy is increased
xj ( i ) to xj ( i )1axi and thenxi is set to 0. The process i
repeated if some of the new energies are above 1. Whe
the site energies are smaller than 1, the avalanche ends
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the system returns to the loading phase.
The parameter 0<a<1/K controls the dissipation during

an avalanche. Ifa51/K, energy is conserved and the tot
energy of the system is constant during an avalanche. On
contrary, it decreases fora,1/K.

Results of simulations@9# as those reported in Fig. 1, hav
shown that the probability distributionPt(x) of site energies
tends at large times toward a nontrivial stationary distrib
tion P(x). It is, in fact, possible to obtain the exact evolutio
equation obeyed byPt(x) in the limit N→` as we now
show. We define the size of an avalanche as the numbe
topplings during its evolution~the number of sites where th
energy becomes greater or equal to the threshold!. We sup-
pose that the parametera is small enough so that the mea
avalanche size has a finite value when the system size t
to infinity. The two regimes of the dynamics contribute to t
evolution ofPt and are considered in turn. For definitene
we fix to unity the growth rate due to the constant loadin
So, in a time intervalDt betweent and t1Dt, the site ener-
gies increase byDx5Dt. This gives rise toM avalanches
with M5NPt(1)Dx @NPt(1) is the density of sites which
have their energy just below 1]. The sites which are upda
during the course of these avalanches belong to three dis
classes:~i! the M starting sites of the avalanches the ener
of which is set to zero,~ii ! the sites which through energ
redistribution have their energies first increased above 1
then set to 0, the total number of which we define to
M Āt , and~iii ! those that have their energies increased be
1, the final energies of which are distributed according t
densityMBt(x).

Note that we assume that the system is large enoug
that the probability that a given site has been updated m
than once is negligible. Att1Dt, the probability distribution
of site energies has becomePt1Dt(x) with

NPt1Dt~x!5NPt~x2Dx!2Md~x21!1MBt~x!

1M ~ Āt11!d~x!2KM ~ Āt11!Pt~x!. ~1!

The last term on the right-hand side accounts for the fact
the sites of classes~ii ! and~iii ! are picked at random amon
the N sites and that their total number isKM ( Āt11) ~since
the energy of each site above threshold is redistributed tK
other sites!. Taking the limitDt→0, we obtain the evolution
equation forPt(x), 0<x<1:

] tPt~x!1]xPt~x!5Pt~1!@Bt~x!2K~ Āt11!Pt~x!# ~2!
R2343 © 1997 The American Physical Society
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together with the injection condition atx50,

Pt~0!5Pt~1!~ Āt11!. ~3!

In order to obtain a closed equation forPt(x), it remains
to determine the characteristics of the avalanches,Āt and
Bt(x), in terms ofPt(x). To this end, we analyze the cours
of an avalanche in a more detailed way. At thenth step of an
avalanche, for each site in class~ii ! that is set to 0,K sites
are randomly chosen. Those that have their energies tem
rarily increased above 1 belong to class~ii ! and we denote by
an(x), x>1, the distribution of their energies above thres
old. The avalanche ends whenan(x)50. Similarly, we call
bn(x), a<x,1 the distribution of sites of class~iii ! pro-
duced at thenth step. This gives, therefore, forx>1,

an~x!5KE
1

1/~12a!

an21~y!P~x2ay!dy. ~4!

For x,1, one obtains an equation with the same right-ha
side but withbn(x) instead on the left-hand side. In Eq.~4!,
the integral upper bound has been taken to be 1/(12a) since
a brief study of the series defined byu051 and
un11511aun shows thatan(x) is zero if x>1/(12a). To
compute the evolution ofPt(x), we can restrict ourselves t
considerBt(x) which is the total density(nbn of sites of
class~iii ! averaged over theM avalanches occurring betwee
t and t1Dt. We similarly defineAt(x) as the average ove
these avalanches of(nan . From Eq.~4!, At(x) is determined
from Pt(x) as the solution of the linear equation forx>1:

At~x!5KF E
1

1/~12a!

At~y!Pt~x2ay!dy1Pt~x2a!G .

~5!

For x,1, the left-hand side is replaced byBt(x),

Bt~x!5KF E
1

1/~12a!

At~y!Pt~x2ay!dy1Pt~x2a!G .
~6!

This gives Bt in terms of At(x) and Pt(x). Since
Āt[*dxAt(x), the evolution ofPt(x) is determined by solv-
ing Eq.~2! together with Eq.~5! using the expression~6! for
Bt(x). Specializing to the steady state time independ
functions, we finally obtain for 0<x<1,

P8~x!

KP~0!
1P~x!5

*1
1/~12a!A~y!P~x2ay!dy1P~x2a!

Ā11
,

~7!

where the steady state distributionA(x) is determined from
P(x) by Eq. ~5! ~with the time indices dropped!. At this
stage, several simple remarks can be made. The size o
avalanche is the total number of sites in class~ii ! plus the
starting site so the mean avalanche sizes̄511 Ā. It is useful
to note that the injection condition~3! is directly obtained by
integrating Eq.~7! from x50 to x51 and by using*0

1P51

and *B5K( Ā11)2 Ā @the last equality follows from the
avalanche rule as noted above but it can also be derive
o-

-

d

t

an

by

adding Eqs.~5! and~6! and integrating overx]. Equation~3!

gives the alternative expression ofs̄ as s̄5P(0)/P(1).
There are infinite avalanches with nonzero probability only
P(0) is infinite orP(1) is zero. Actually, we find below tha
both are true. Large avalanches lead to largeP(0) but also
deplete the distribution of sites energies away from a sm
number of given energies with a depletion length prop
tional to 1/P(0) . This leadsP(1) to decrease exponentiall
fast whenP(0) increases.

We now turn to the solution of Eqs.~5! and~7!. First, one
can note that the right-hand side of Eq.~7! vanishes for
0<x,a sinceB(x)50 in this range. Therefore, forx,a,
one has the exact formP(x)5P(0)exp@2KP(0)x# which
simply reflects the balance between the constant site crea
at x50 and the depletion due to site recruitment in av
lanches. Besides this simple result, an analytical determ
tion of P(x) has eluded us. We have therefore solved n
merically Eqs.~5! and ~7!, taking advantage of the know
form of P(x) for x,a. Given A(x), this determines the
right-hand side of Eq.~7! for a<x,2a and thusP(x) in
this range. Continuing the process, the computation ofP(x)
consists of solvingK linear inhomogeneous differentia
equations. We have thus iterated the following process: so
Eq. ~7! for someP(0) andA, normalizeP so that*P51, set
P(0) to its new actual value, and use Eq.~5! to find the new
A. The nontrivial satisfaction of relation~3! was used as a
check of the computation. The computedP(x) for K54 is
shown in Fig. 1 and agrees well with simulations results. F
K52, similar agreement is obtained. The computed m
avalanche size agrees with the averaged avalanche size
tained from simulations, in the range ofa where they can be
compared, as shown in Fig. 2 forK52. For the largesta ’s,
it was found necessary to use lattices ofN523104 and
average over 33105 avalanches to ensure that convergen
to the steady state was reached and that the results were
from finite size effects.

In both cases, the mean avalanche size grows very qui
when a approaches 1/K. In Ref. @9#, similar results were
interpreted as a divergence of the mean avalanche siz
ac50.2255 for K54. With our numerical procedure, th
solutions of Eqs.~5! and ~7! can, however, be reliably ob
tained up toa50.236, far above the purported criticalac .
The corresponding distributionsP(x) are shown in Fig. 3 for
K54 and do not display any singularity ata50.2255. On
the contrary, the four peaks of the distribution appear
sharpen smoothly asa increases. This leads us to think th
they smoothly tend tod peaks asa→1/4. As shown in the
insert of Fig. 2, a similar behavior is observed forK52.

The presence of sharper and sharper peaks puts a h
demand on numerical resolution and prevents a direct
merical approach of the limita→1/K ~with our algorithm, at
least!. To analyze further this limit, we focus for simplicit
on the caseK52. Fora51/2, P(x) is made of twod peaks
located atx50 andx51/2, respectively, whileA(x) is sim-
ply a d peak atx51. Whena is close to 1/2,P(0) becomes
large and the derivative term in Eq.~7! can balance the othe
terms only if P(x) has a fast variation on a scale 1/P(0).
This is indeed the case of the exact form ofP(x) nearx50.
We therefore search forA andP under the form
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A~x!.
P~0!2

P~1!
a„P~0!@x2122h~a!#…, ~8!

P~x!5P~0!exp@22P~0!x#, x<a,

P~x!.
1

2
P~0!P„P~0!@x2a2h~a!#…, x>a, ~9!

wherea andP are two functions to be determined that ha
been normalized so that their integrals equal 1 and that
scribe the broadening foraÞ1/2 of thed peaks atx51 and
x51/2, respectively. The peak displacementh(a) is sup-
posed to tend to zero asa→1/2. Moreover, self-consistenc
requires thatP(0)h(a)→` whena tends toward 1/2. This
allows one to neglect the weight ofB(x)/ Ā nearx51 @note

FIG. 1. Stationary distribution obtained by simulation~circles!
and by solving Eqs.~5! and ~7! ~continuous line! for K54 and
a50.2. Simulations results are the average of 23104 avalanches on
a lattice ofN553103 sites and the bin size is 0.01.

FIG. 2. Mean avalanche size vsa for K52 showing solutions

of Eqs.~5! and~7! with s̄5 Ā11 ~circles! and results of numerica
simulations~filled squares!. The line is a guide for the eyes. Inse
P(x) obtained by solving Eqs.~5! and ~7! for K52 and
a50.45, 0.453, 0.456, 0.463.
e-

thatB(x) is the continuation ofA(x) for x,1], as supposed
in Eq. ~9!. Substituting the forms~8! and ~9! into Eqs.~5!
and ~7!, we obtain at dominant order,

a~x!5E
2`

1`

P~x12C2u/2!a~u!du, ~10!

P~x!54e22xE
2`

2x

a~u!eu~x2u/2!du, ~11!

where we have defined the constantC5lima→1/2(1/2
2a)P(0) and integrated the linear differential equation f
P. Taking Fourier transforms of Eqs.~10! and ~11!, one
obtains forâ(v)5*dx exp(ivx)a(x), the functional equation

FIG. 3. Stationary distribution obtained by solving Eqs.~5! and
~7! for K54 anda50.22, 0.224, 0.228, 0.232, 0.236.

FIG. 4. a(x) ~dashed line! and rescaled graphsA(y)a* /A* vs
x5@y2122h(a)#r ~lines! for K52 and a50.45, 0.456, and
0.463.a* /A* is the ratio of the curve maxima andr5A* /(a* *A);
r/P(0)51.145,1.117,1.089 for the graphs shown, approaching 1
expected whena→1/2. Inset: 1/P(0) vs (1/22a); the straight line
fit has a slope of 2.3.
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â~v!5
exp~22ivC!

~12 iv/2!2
â2~v/2!. ~12!

We fix the translational symmetry of Eqs.~10! and ~11!
@a(x)→a(x1x0), P(x)→P(x1x0/2)# by imposing
*xa(x)dx50. Then, the unique solution of Eq.~12! without
a singularity atv50 is

â~v!5 )
n51

`
exp~22ivC!

~12 iv/2n!2n , ~13!

where convergence of the infinite product enforcesC51/2.
One can check that the inverse Fourier transforma(x) of
â(v) is indeed a real function and is positive, as it shou
since it is the convolution of the real positive functions

vn~x!5
2n@2n~x11!#2n21

~2n21!!
e22n~x11!u~x11!. ~14!

Whenx→2`, this allows one to show thata(x) andP(x)
tend extremely quickly towards zero, name
a(2x);P(x);exp(2cst 42x). Comparing the two estima
tions ~9! of P(x) nearx5a, one obtains for the peak dis
placementP(0)h(a).u ln(1/22a)u/ ln(4) asa→1/2. When
x→1`, the analytic expression~13! @or directly Eqs.~10!
and ~11!# shows thata(x) and P(x) tend toward zero as
x exp(22x). Using this asymptotic behavior to estima
P(1) gives that the mean avalanche size,P(0)/P(1), di-
-
B:

et
,

verges like exp@cst/(1/22a)# when a→1/2. These predic-
tions are compared in Fig. 4 to results obtained from
numerical solutions of Eqs.~5! and~7! for K52 and differ-
ent values ofa. As shown in the inset, 1/P(0) vanishes
linearly whena→1/2 with a measured slope of 2.3 close
the analytical prediction of 1/C52, the difference between
the two being quite compatible with higher order terms
1/22a. The functiona(x) obtained by taking the invers
Fourier transform of~13! compares well to rescaled plots o
A(y) with h(a) chosen so as to make the different maxim
coincide @10#. Similar agreement is obtained between t
analyticP(x) and rescaled versions ofP(y) aroundy51/2.
Finally, the extremely rapid growth of the mean avalanc
size whena→1/2 agrees semiquantitatively with the n
merical results shown in Fig. 2 but is itself an obstacle to
precise numerical check of the predicted asymptotics. T
avalanche size full distribution is given by the usual form f
branching processess23/2exp(2s/j) as numerically observed
in @9#. This makes it also difficult to avoid finite size effec
in numerical simulations whena→1/K since the cut-offj in
the avalanche size distribution scales as the square of
mean avalanche size.

In conclusion, evidence has been presented that the
dom neighbor OFC model has finite avalanches as soo
the model is nonconservative with a mean avalanche
which increases extremely quickly as the conservative li
is approached. It would be interesting to assess the gener
of this phenomenon and its relevance for lattice models.
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