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Analysis of a dissipative model of self-organized criticality with random neighbors
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We analyze a random neighbor version of the Olami-Feder-Christensen stick-slip model. We find that the
mean avalanche size is finite as soon as dissipation exists in the bulk but that this size grows exponentially fast
when dissipation tends to zef&1063-651X%97)50109-1
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It is an appealing idea that many power laws observed irthe system returns to the loading phase.
nature arise from an intrinsic trend of a large class of ex- The parameter € a<1/K controls the dissipation during
tended non-equilibrium systems to evolve toward criticalan avalanche. ltv=1/K, energy is conserved and the total
points[1]. This concept of self-organized criticalifsOQ energy of the system is constant during an avalanche. On the
has therefore attracted much interest and implicit assumpeontrary, it decreases far<1/K.
tions of the original model have been subjected to intense Results of simulationg9] as those reported in Fig. 1, have
scrutiny. Several early SOC explanations assigned a crucighown that the probability distributio,(x) of site energies
role to strict bulk conservatiof2,3]. Nonconserving models tends at large times toward a nontrivial stationary distribu-
which show SOC behavior have since been fol#d] but  tion P(x). It is, in fact, possible to obtain the exact evolution
in several cases the effect of a small dissipation remaingquation obeyed by, (x) in the limit N—<« as we now
unclear. An interesting model where dissipation is controllecshow. We define the size of an avalanche as the number of
by a parametew, has been introduced by Olami, Feder, andtopplings during its evolutioiithe number of sites where the
ChristensefOFQ) in [6] as a simplified version of previous energy becomes greater or equal to the threshdl sup-
modeling of fault dynamic$7]. Numerical results and sup- pose that the parameteris small enough so that the mean
porting arguments appear to indicate that the OFC modedvalanche size has a finite value when the system size tends
exhibits power-law distributed avalanches in the dissipativeo infinity. The two regimes of the dynamics contribute to the
range ofa values below the conserving, [6,8]. A random  evolution of P, and are considered in turn. For definiteness,
neighbor version of the OFC model has been studie®]n we fix to unity the growth rate due to the constant loading.
and numerical evidence of SOC behavior has similarly beeigo, in a time intervalAt betweent andt+ At, the site ener-
found for ac<a<a,. Our aim here is to analyze this sim- gies increase byAx=At. This gives rise toM avalanches
pler version of the OFC model. In contrast [®], we find  with M=NP,(1)Ax [NP,(1) is the density of sites which
that avalanches are of finite size up to the conserving limihave their energy just below 1]. The sites which are updated
a=ag but that their mean size grows exponentially fast asjuring the course of these avalanches belong to three distinct
a— ay. This may explain our disagreement wj] and can  classes(i) the M starting sites of the avalanches the energy
perhaps also serve as a cautionary note about similar numewf which is set to zero(ii) the sites which through energy
cal evidence obtained for local lattice models. redistribution have their energies first increased above 1 and

The model[9] consists of a set oN sites, to each of then set to 0, the total number of which we define to be

which is associated an “energyX;. The dynamics alter- M, and(iii) those that have their energies increased below

nates between two phasgs. 1, the final energies of which are distributed according to a
(i) The loading phase is supposed to take place on a |°”SensityM Bi(X).

time scale in the fault dynamics context. In this phase, all the Note that we assume that the system is large enough so

x; are below a threshold and increase continuously and Sinat the probability that a given site has been updated more

multaneously with time. This regime lasts until one energyinan once is negligible. At+ At, the probability distribution
reaches the threshold energy, which we choose equal to 1. Ak gjte energies has becorfg, 4(x) with

this point, an avalanche starts and the dynamics enters the

avalanche phase. NP, :(X)=NPy(x—Ax)—M §(x— 1) + MB,(x)
(ii) The avalanche phase is thought to be instantaneous on L .
the time scale of the loading which can thus be neglected. +M(A;+1)8(X) —KM(A+1)Py«(x). (1)

The dynamics is entirely governed by energy transfers be- ) )
tween different sites. For east=1, K different site§ ) are ~ The last term on the right-hand side accounts for the fact that

randomly chosen. On each one, the energy is increased frofie sites of classe@) and(iii) are picked at random among

X to X;m+ax; and thenx; is set to 0. The process is the N sites and that their total numberkaM (A;+ 1) (since

repeated if some of the new energies are above 1. When dhe energy of each site above threshold is redistributed to

the site energies are smaller than 1, the avalanche ends aather siteg Taking the limitAt— 0, we obtain the evolution
equation forP;(x), 0=x<1:

* Associeau CNRS et aux UniversigeParis VI et VII. FtPy(X) + 9y P(X) = P;(1)[ B(X) — K(A_t+ DP(x)] (2
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together with the injection condition at=0, adding Egs(5) and(6) and integrating ovex]. Equation(3)
_ gives the alternative expression af as s=P(0)/P(1).

P0)=P(1)(At1). () There are infinite avalanches with nonzero probability only if

P(0) is infinite orP(1) is zero. Actually, we find below that
both are true. Large avalanches lead to |aPR§@) but also
deplete the distribution of sites energies away from a small
number of given energies with a depletion length propor-
tional to 1P(0) . This leadsP(1) to decrease exponentially
fast whenP(0) increases.

We now turn to the solution of Eq5) and(7). First, one
can note that the right-hand side of E{J) vanishes for

In order to obtain a closed equation Bf(x), it remains
to determine the characteristics of the avalanclgsand
Bi(x), in terms ofP;(x). To this end, we analyze the course
of an avalanche in a more detailed way. At tite step of an
avalanche, for each site in clagp) that is set to 0K sites
are randomly chosen. Those that have their energies tempo-
rarily increased above 1 belong to clds$and we denote by
a,(x), x=1, the distribution of their energies above thresh- . A .
old. The avalanche ends wheg(x)=0. Similarly, we call O=<x<a sinceB(x)=0 in this range. Therefore, fOK,a’
by(X), a<x<1 the distribution of sites of clas§i) pro- °N€ has the exact form®(x)=P(0)exd —KP(0)x] which
duced at thenth step. This gives, therefore, fae1, simply reflects the balance between the constant site creation

at x=0 and the depletion due to site recruitment in ava-
U1-a) lanches. Besides this simple result, an analytical determina-
""n(x)sz1 an-1(y)P(x—ay)dy. (4)  tion of P(x) has eluded us. We have therefore solved nu-
merically Egs.(5) and (7), taking advantage of the known

For x<1, one obtains an equation with the same right-handorm of P(x) for x<a. Given A(X), this determines the

side but withb,(x) instead on the left-hand side. In Ed),  right-hand side of Eq(7) for a<x<2a« and thusP(x) in

the integral upper bound has been taken to be-14) since  this range. Continuing the process, the computatioR (©f)

a brief study of the series defined byy=1 and consists of solvingK linear inhomogeneous differential

Ups 1= 1+ au, shows that,(x) is zero ifx=1/(1—«). To  equations. We have thus iterated the following process: solve

compute the evolution oP,(x), we can restrict ourselves to Eq.(7) for someP(0) andA, normalizeP so thatfP=1, set

considerB(x) which is the total density=, b, of sites of P(0) to its new actual value, and use E§) to find the new

class(iii) averaged over thi! avalanches occurring between A. The nontrivial satisfaction of relatiof8) was used as a

t andt+At. We similarly defineA(x) as the average over check of the computation. The computBdx) for K=4 is

these avalanches &f,a,. From Eq.(4), A(x) is determined  shown in Fig. 1 and agrees well with simulations results. For

from P(x) as the solution of the linear equation fo®1: k=2 similar agreement is obtained. The computed mean
avalanche size agrees with the averaged avalanche size ob-
tained from simulations, in the range @fwhere they can be
compared, as shown in Fig. 2 f&r=2. For the largest’s,

(5) it was found necessary to use lattices M&2x10* and
average over 10° avalanches to ensure that convergence
to the steady state was reached and that the results were free
from finite size effects.

In both cases, the mean avalanche size grows very quickly

6) when « approaches K. In Ref. [9], similar results were
interpreted as a divergence of the mean avalanche size at

This gives B; in terms of A(x) and P,(x). Since a@.=0.2255 forK=4. With our numerical procedure, the

A_t—fdxAt(x) the evolution ofP,(x) is determined by solv- sqlutions of Egs(5) and (7) can, however, be relig_bly ob-

ing Eq.(2) together with Eq(5) using the expressiof6) for tained up toae=0.236, far above the purported critical .

B((X). Specializing to the steady state time mdependeni'—he corresponding distributiori¥(x) are shown in Fig. 3 for

11— a)
Ax)=K Jl Al(Y)Pi(Xx—ay)dy+P(x—a)

For x<1, the left-hand side is replaced By(x),

11— a)
Bi(x)=K L A((Y)Pi(X—ay)dy+P(x—a)|.

functions, we finally obtain for &x=<1, K=4 and do not display any singularity at=0.2255. On
the contrary, the four peaks of the distribution appear to
P’ () UA-aA(y)P(x— ay)dy+ P(x— a) sharpen smoothly as increases. This leads us to think that
—— +P(x)= , they smoothly tend t& peaks asx—1/4. As shown in the
KP(0) A+1 insert of Fig. 2, a similar behavior is observed o= 2.
(7 The presence of sharper and sharper peaks puts a heavy

demand on numerical resolution and prevents a direct nu-
merical approach of the limi&— 1/K (with our algorithm, at
leas). To analyze further this limit, we focus for simplicity

stage, several simple remarks can be made. The size of &) o cas& =2, Fora=1/2 P(x) is made of twos peaks
avalanche is the total number of sites in cléss plus the 405164 ax=0 andx= 1/2, réspectively, whilé\(x) is sim-
starting site so the mean avalanche sizel+A. Itisuseful  ply a § peak atx=1. Whene is close to 1/2P(0) becomes
to note that the injection conditiof3) is directly obtained by large and the derivative term in E) can balance the other
integrating Eq.(7) from x=0 tox=1 and by using'GP=1  terms only if P(x) has a fast variation on a scaleP{0).
and [B=K(A+1)—A [the last equality follows from the This is indeed the case of the exact formRgf) nearx=0.
avalanche rule as noted above but it can also be derived By/e therefore search fgk and P under the form

where the steady state distributié{x) is determined from
P(x) by Eg. (5 (with the time indices droppedAt this
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FIG. 1. Stationary distribution obtained by simulati@sircles
and by solving Eqs(5) and (7) (continuous ling for K=4 and
«=0.2. Simulations results are the average &fl?* avalanches on
a lattice ofN=5x10° sites and the bin size is 0.01.

FIG. 3. Stationary distribution obtained by solving E¢S. and
(7) for K=4 anda=0.22, 0.224, 0.228, 0.232, 0.236.

thatB(x) is the continuation oA(x) for x<1], as supposed
in EqQ. (9). Substituting the form$8) and (9) into Egs.(5)

A(X)= %a(p(o)[x_ 1-279(a)]), (8  and(7), we obtain at dominant order,
P(x)=P(0)exd —2P(0)x], x<a, a(x)=Jf:H(HZC—u/Z)a(U)du, (10)
1
P(X):EP(O)H(P(O)[X_CY_ n(a)]), x=a, (9 H(x)24872)(]72)(a(u)eu(X—U/Z)dU, (12)

wherea andII are two functions to be determined that have

been normalized so that their integrals equal 1 and that dewhere we have defined the constaf=Ilim,_ ,,(1/2
scribe the broadening far+ 1/2 of thed peaks ak=1 and  —a)P(0) and integrated the linear differential equation for
x=1/2, respectively. The peak displacemef(ter) is sup- II. Taking Fourier transforms of Eq$10) and (11), one

requires thaP(0) n(a) —~ whena tends toward 1/2. This

allows one to neglect the weight Bf(x)/A_nearXZ 1 [note
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FIG. 4. a(x) (dashed ling and rescaled graphs(y)a*/A* vs
FIG. 2. Mean avalanche size wsfor K=2 showing solutions x=[y—1-25(a)]p (lines for K=2 and a=0.45, 0.456, and
of Egs.(5) and(7) with s=A+1 (circles and results of numerical 0.463.a*/A* is the ratio of the curve maxima apd=A*/(a* [A);
simulations(filled squares The line is a guide for the eyes. Inset: p/P(0)=1.145,1.117,1.089 for the graphs shown, approaching 1 as
P(x) obtained by solving Eqgs.5) and (7) for K=2 and expected whem—1/2. Inset: 1P(0) vs (1/2- «); the straight line
a=0.45, 0.453, 0.456, 0.463. fit has a slope of 2.3.
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~ exp(—2iwC) . verges like exjrst/(1/2-«)] when a—1/2. These predic-
<’:1(w)=(1i—/2)2 a’(wl2). (12 tions are compared in Fig. 4 to results obtained from the
—lw

numerical solutions of Eqg5) and(7) for K=2 and differ-
We fix the translational symmetry of Eqél0) and (11)  ent values ofa. As sh_own in the inset, P(0) vanishes
[a(x)—a(Xx+Xg), II(X)—II(x+X,/2)] by imposing linearly whena— 1/2 with a measured slope of 2.3 close to
fxa(x)dx=0. Then, the unique solution of E(L2) without  the analytical prediction of O=2, the difference between

a singularity atw=0 is the two being quite compatible with higher order terms in
1/2— «. The functiona(x) obtained by taking the inverse
- exp —2iwC) Fourier transform of13) compares well to rescaled plots of
a(w)=11 (13

A(y) with 5(a) chosen so as to make the different maxima
coincide [10]. Similar agreement is obtained between the
where convergence of the infinite product enfor€es1/2.  analyticlI(x) and rescaled versions &f(y) aroundy=1/2.
One can check that the inverse Fourier transf@fr) of  Finally, the extremely rapid growth of the mean avalanche
a(w) is indeed a real function and is positive, as it should sizeé whena—1/2 agrees semiquantitatively with the nu-
since it is the convolution of the real positive functions ~ merical results shown in Fig. 2 but is itself an obstacle to a
precise numerical check of the predicted asymptotics. The
2" 2" (x+ 1)]2"*l o(x+ 1) avalanche size full distribution is given by the usual form for
vn(X)= (2"—1)! e o(x+1). (14 branching processes *%exp(—s/&) as numerically observed
' in [9]. This makes it also difficult to avoid finite size effects
Whenx— — o, this allows one to show thai(x) andII(x)  in numerical simulations whea— 1/K since the cut-off in
tend extremely quickly towards zero, namely, the avalanche size distribution scales as the square of the
a(2x)~TII(x)~exp(—cst 4 ¥). Comparing the two estima- mean avalanche size.
tions (9) of P(x) nearx=a, one obtains for the peak dis- In conclusion, evidence has been presented that the ran-
placementP(0) 7(a)=|In(1/2— a)|/In(4) asa— 1/2. When  dom neighbor OFC model has finite avalanches as soon as
X— 4o, the analytic expressioflL3) [or directly Egs.(10)  the model is nonconservative with a mean avalanche size
and (11)] shows thata(x) andII(x) tend toward zero as which increases extremely quickly as the conservative limit
X exp(—2x). Using this asymptotic behavior to estimate is approached. It would be interesting to assess the generality

=1 (1—iw/2H?"’

P(1) gives that the mean avalanche siB{0)/P(1), di- of this phenomenon and its relevance for lattice models.

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev38, 364 68, 1244(1992; K. Christensen and Z. Olami, Phys. Rev. A
(1988; G. Grinstein inScale Invariance, Interfaces and Criti- 46, 1829(1992.
cality, Vol. 344 of NATO Advanced Study Institute, Series B: [7] R. Burridge and L. Knopoff, Bull. Seismol. Soc. Ard7, 341
Physics, edited by A. McKaneet al. (Plenum Press, New (1967; J. M. Carlson and J. S. Langer, Phys. Rev. L68.
York, 1995. 2632(1989.

[2] T. Hwa and M. Kardar, Phys. Rev. Let62, 1813 (1989; [8] J. E. S. Socolar, G. Grinstein, and C. Jayaprakash, Phys. Rev.
G. Grinstein, D. H. Lee, and S. Sachddbjd. 64, 1927 E 47, 2366(1993; P. Grassbergeibid. 49, 2436 (19949; A.
(1990. A. Middleton and C. Tang, Phys. Rev. Lefd, 742 (1995.

[3] J. M. Carlsoret al, Phys. Rev. Lett65, 2547(1990. [9] S. Lise and H. J. Jensen, Phys. Rev. Lé§.2326(1996.

[4] B. Drossel and F. Schwabl, Phys. Rev. Lé8, 1629(1992; [10] A plot of the obtainedP(0)7(a) vs In(1/2- «) is well fitted
B. Drossel, S. Clar, and F. Schwaliiid. 71, 3739(1993. by a straight line of slope-0.7 close to the expected

[5] P. Bak and K. Sneppen, Phys. Rev. L&tt, 4083(1993. —1/In(4). A more precise test would require solutions of Egs.

[6] Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev. Lett. (5) and(7) for values ofa closer to 1/2 than ours.



